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The quantum Heisenberg chain with Dzyaloshinsky-Moriya interactions is 
solved by relating it to the X X Z Hamiltonian with a certain type of boundary 
conditions. Several properties of the ground state are derived which agree with 
the intuition derived from related soluble classical models. Implications to the 
model of known results from the theory of conformal invariance, as well as 
generalizations to higher spin, are briefly discussed. 

KEY WORDS: Quantum Heisenberg chain; Dzyaloshinsky-Moriya inter- 
actions; Bethe ansatz; boundary conditions; conformal invariance. 

1. INTRODUCTION AND S U M M A R Y  

Lattice systems wit competitive interactions have aroused great interest, 
both theoretical and experimental, in the last decade (1) Of special impor- 
tance are uniaxially modulated magnk:tic structures, where the expectation 
value of the spin varies periodically only along one crystallographic direc- 
tion and in which, basically, two types of arrangement may be generated: 
(a) an antiphase structure and (b) a spiral or helicoidal structure. In case 
(a) the spins are of Ising type, i.e., have only one component different from 
zero, as in the so-called ANNNI model (see ref. 1 and references given 
there). In case (b) the spins have more than one nonzero component and 
neighbor spins make a fixed angle ~o with one another in a certain region 
of temperature and coupling constant. 

In this paper we consider quantum versions of case (b). In order 
to describe our motivation, consider the classical X Y  chain with 
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Dzyaloshinsky-Moriya (2/ (DM) interactions. The Hamiltonian for N spins 
is given by 

N N 

H N = - - J 1  2 S i ' S i + l + J 2  2 ( S i x S i +  1 ) ' ~  (1.1) 
i = 1  i = 1  

with J~ ~> O, J2 >~ 0 (other cases are related by canonical transformations), 
and where the boundary conditions (b.c.) are left open for the time being. 
The above classical spins are unit vectors in the plane, Si=-S~, S~), with 
S~ =cos  ~ and S~ = sin ~i, i =  1,..., N, the cross denotes vector product, 
and i is a unit vector along the z axis. Clearly, the first term in (1.1) tends 
to render neighbor spins parallel, while the second has the effect of turning 
them perpendicular to one another. The resulting ground state has a spiral 
structure: 

O N  ~ -- - -  

where ~b is defined by 

J~ ~ 
cos 0 c o s ( ~ - ~ , + l - ~ )  

i ~ l  

~b = arc tan J2/J1, q~ e [0, ~z/2] 

(1.2) 

By the above choice of ~b, (J1/cos q~)/> 0 and the ground state is given by 

c~ i -  7~+1 = ~b (1.3b) 

as long as 

c~N+ 1 = p(~l +r p=0,  1 (1.4) 

where p = 0 corresponds to free b.c. and p = 1 to the angle-dependent b.c. 
of Section 2. We therefore see, even in this elementary example, the essen- 
tial role played by the boundary condition (1.4). Note that the classical 
ground state has helical structure however small -/2, showing already a 
fundamental qualitative difference between systems with DM interaction 
and those models of ANNNI type (1) where competition is introduced 
through a next-nearest-neighbor interaction of antiferromagnetic type. In 
fact, the corresponding classical XY chain is also soluble (3'4) and it is found 
that the ground state remains ferromagnetic if the ratio of next-nearest 
antiferromagnetic coupling to nearest-neighbor ferromagnetic coupling is 
sufficiently small. 

The quantum version of (1.1) 

N 
x x y y x y x HN(-J,A)= ~ [J(SiS,+I+SiS,+ll+A(S,Si+I-S,+ISf)] (1.5) 

i = 1  

(1.3a) 
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with periodic boundary conditions, J =  - 1  (antiferromagnetic case), and 
A = J 2 / J l  = --J2 was solved in refs. 5 and 6 by a Jordan-Wigner transfor- 
mation. Correlation functions in the ground state 10o) such as 

CgQ-- <00 Isi.s,+lj 00) (1.6) 

may be computed through the use of Wick's theorem and the result is 
[ref. 5, formula (7.15), p. 282] 

1 ] 1/2 l 
C ~ Q  = - - - -  (Z~ 2 "~ 1 j = -  COS a rc tan ( -A)  (1.7) 

7Z 7Z 

taking a r c t a n ( - A ) e  [0, ~/2) as in the classical case. The authors of ref. 5 
did not compare their results with the classical case (!), but we see that, 
apart from the factor 1/Tt (which is also present ifA = 0), (1.7) and (1.3) are 
equal, showing that the ground state is qualitatively the same as the classi- 
cal one; the discrepancy arises from the degeneracy of the classical ground 
state. Indeed, (1.7) may be written 

C~l 
C~Q - rc = (area of region where $1 may vary) 

where C ~ l  = cos a rc t an ( -A)  is the classical correlation function. Clearly, 
fixing the position of $1 and the boundary condition determines uniquely 
the ground-state configuration. 

It is a basic question, both from the conceptual and the experimental 
point of view (due to "quantum crossover" effects at low temperatures), 
whether quantum ground (and low-lying) states differ qualitatively from 
their classical counterparts, and, in general, what such states look like. 
In this paper we take a step in this direction by solving the quantum 
Heisenberg chain with DM interactions 

N 

HN=HN(2 ,  2 A ) - 2 6  ~ S;S~+ 1 (1.8) 
i = 1  

where Hu(et, fl) was defined in (1.5). The results are presented in Section 2, 
which is divided into five parts for clarity. The (Bethe-ansatz) solution 
and the corresponding phase diagram are presented and discussed in 
Section 2.1. There, again, a crucial role is played by the boundary condi- 
tions. We study both free and toroidal boundary conditions [analogous to 
p = 1 in (1.5)] in Sections 2.2 and 2.3, respectively. In Section 2.2 (free b.c.) 
the ground-state energy per unit volume e•. 6 is derived, as well as some of 
its properties: in particular, the special case 6 = 0 of ref. 5 is obtained, and 

822/58/1-2-4 
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the inequality ea,a~<e0,a, obvious for 6 =  1 (isotropic ferromagnet), is 
derived in general. For a special value of A # 0 it is also shown that 
ea,_~<eo._~. In Section2 (toroidalb.c.) we discuss the excitation 
spectrum. In Section 2.4 we briefly discuss some implications of known 
results in the theory of conformal invariance/~6) to the present model, as 
well as extensions to models of higher spin. Section 2.5 is devoted to 
conclusions and open problems. 

2. RESULTS FOR THE Q U A N T U M  HEISENBERG CHAIN  
W I T H  D Z Y A L O S H I N S K Y - M O R I Y A  I N T E R A C T I O N S  

In this section we will solve the quantum anisotropic Heisenberg chain 
(or X X Z  chain) with Dzyaloshinsky-Moriya interactions (1.8), which we 
rewrite now in terms of Pauli matrices a~ = 2S~, 

where 

D M  H N (A, a)=HXNXZ(6)+ V~M(A) (2.1a) 

1 u 
x x Y Y +6a~az+ ) (2.1b) - ( a , o , + l  + ,ai+l 

i = l  

is the X X Z  quantum Hamiltonian, with anisotropy 6, and 

A N 
x y 

- -  - - { T i ( ~ i +  l 
v~vM(a) -- ~ - ~  (a , a i+ ,  Y y ) (2.1c) 

i = l  

is the Dzyaloshinsky-Moriya interaction. 

2.1. So lut ion  and Phase  Diagram 

The solution of Hamiltonian (2.1) through the Bethe ansatz is 
obtained by relating it to the X X Z  chain with a certain type of b.c. 

In order to proceed, let us introduce the following matrices, located at 
the sites of the finite (size N) chain 

i x o z = ~(aj +_ aj = aj, j = 1, 2 ..... N (2.2) 

The commutation relations of these matrices are invariant under the 
general canonical transformation 

1 
t m  m , n  n ~j = ~, A aj,  j = I ,  2, . . . ,N (2.3a) 
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where Am'" are (3 x 3) matrices forming the 0(2)  group, i.e., 

A e  {G(O).C=lOe [0, 2n), ~ = 0 ,  1} (2.3b) 

where 'o ei~ (!0!) 
0 e i~ 0 

(2.3c) 

In terms of these variables (2.1) may be rewritten as 

DM l [U~= l (eiCa+la~-+l +e-i4cri-la++l I 
HN (A, •)= - -cos-~ i 1 

oo] + 6 cos ~b aio-i+, + H ~  ~ (2.4a) 

where 

- 7c/2 < ~b - tan IA < ~z/2 (2.4b) 

and H~4 ~ specifies the boundary condition. This Hamiltonian, apart from 
p, f2 the surface term H s , commutes with the z component of the total spin 

operator Sz = ~N= ~ a~, which implies that, in the a z basis, the Hilbert space 
may be separated into block disjoint sectors labeled by the eigenvalues 
n = 0 ,  + l ,  _+2 .... of Sz. The most general boundary conditions compatible 
with this symmetry are 

+1 = p e + _ i ~ o . ~ l ,  o _ o 
0 - ~ +  1 O - N +  i - -  PG1 (2.5) 

where 0 ~< 12 < 2n and p = 0, 1. The angle ~ specifies a rotation, around the 
z axis, of the spin operator aN+ 1 with respect to o 1. The case of free bound- 
aries corresponds to p = 0 and the periodic chain to p = 1 and 12 = 0. Using 
these boundary conditions, the surface term H p'~ in (2.4a) is given by 

H ~ a =  P (ei(~-mr +e i(4-maNial~l 
COS 

+ 6 cos ~ba~ a~ (2.6) 

By making the canonical transformation [see (2.3)3 

r le• ' ao_~,ry o (2.7) 
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the Hamiltonian takes the simple form 

1 
6) = H V (6 cos 06) 

cos~ 

where 

(2.8a) 

N 
H XXZ r N k v C O S 0 6 )  = ~ ( 0 . 7 1  - - 1 -  --1 +1 - -  0 . i+  I ~ 0.i 0 . i+  1 

i = 1  

0 0 -[- 6 COS 060.i(~i+ 1) - -  P( ei(N~ -;2)ff~V IO'11 
+ e-i(Ne~-a)0" N '0"~-' + 6 cos 06 a~ ~ (2.8b) 

is, from (2.2) and (2.1b), the quantum X X Z  Hamiltonian with anisotropy 
6 cos 06 and boundary condition [see (2.5)] 

a~++l i - - P  ew-i(Nr176 0"N+~ 1 =p0"0 (2.8C) 

The result (2.8) shows us that the effect of the introduction of the 
Dzyaloshinsky-Moriya interaction in the X X Z  quantum chain is the 
change of the anisotropic constant 6 ~ 6 c o s 0 6 = 6 / ( 1  +A2) 1/2 and of the 
boundary conditions ~2~t'2-N06 [see (2.5) and (2.9)]. From the usual 
arguments, in the thermodynamic limit ( N ~  ~ )  the boundary condition 
does not affect the critical behavior and consequently the Hamiltonian 

DM H o~ (A, 6) will have the same critical properties as the X X Z  Hamiltonian 
HXXZ(,~ cos 06). 

Hence, the phase diagram of the Hamiltonian DM Ho~ (A, 6) may be 
obtained from the known (9) critical properties of the X X Z  chain. Figure 1 
shows this phase diagram where a critical phase C (massless) is separated 
from the massive phases A and F by the lines 

6-= +(1 +d2)  1/2 (2.9) 

From the exact results of the X X Z  quantum chain the critical 
exponents in this massless phase change continuously with the coupling 
constants d and 6. We also show in Fig. 1 a dashed line where all the 
critical exponents are constant. The particular line 6 = 0 shows us that the 
Dzyaloshinsky-Moriya interaction does not modify the critical behavior of 
the x - y  model. 

Let us now consider the effects of the boundary condition explicitly. 

2.2. Free B o u n d a r y  Cond i t ion  ( p = 0 )  

In this case the relations (2.8) and (2.9) show that the Hamiltonian 
DM H u (A, 6) is totally equivalent to the X X Z  quantum chain with free ends 
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Fig. !. The phase diagram of H~M(A, g)). The critical lines 6 = _+ (1 +A2) 1/2 separate the 
massless phase C from massive phases A and F. In the critical phase C the exponents change 
continuously in the space (3, 6). On the dashed line as well on the line 6 = 0 (xy model) the 
critical exponents are constant. 

and anisotropy constant 6/(1 + d2) 1/2. In this case the N dependence of the 
phase in (2.9) does not occur and the thermodynamic limits of HN D~ and 
H XXZ N are identical with the phase diagram of Fig. 1. The X X Z  chain with 
free ends, in the same way as in the periodic case, (lm is also exactly 
integrable through the Bethe ansatz (1l'12) and the properties DM of H N (z1, 6) 
follow from the relations (2.8). For example, the ground-state energy per 
article in the critical phase - 1  ~< [ - 6 / ( 1  +32)~/2=cos ~] ~< 1 is given 

e~(6, A) = - �89 + A2)1/2 (cos 7 + 4 sin2 7 dx 

x {cosh(gx)[cosh(27x) - cos 73 } -1) (2.10) 

The expression (2.10) has interesting consequences. In particular, for 
6 =0,  (2.10) yields 

e~(0, A) = - ~ (1 + d:)  ~/2. 4 dx[cosh(~x)] -2 = _ _  (1 + A2) 1/2 
g 

which agrees with (4.29) of ref. 5 except for the factor 2, which follows from 
the fact that (2.1) equals (for 6 =0 )  twice the Hamiltonian of ref. 5. This is 
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especially significant because the result of ref. 5 was obtained by an entirely 
different method (the Jordan-Wigner transformation). 

Since v~vM(A) defined by (2.1c) has zero expectation value in the 
ferromagnetic ground state (all spins "up" or "down"), it is clear that 
e~(1, A)~<e~(1, 0). In general the inequality is not obvious, but it follows 
from a trick used by Affleck and Lieb (9) in a different context: 

Lemma e~(b,~)<<.e~(6,0). 

Proof. Let HXuXZ(6) and VDNM(A) be defined by (2.1b) and (2.1c), 
respectively, with periodic b.c., and define 

Then 

1 N 
AN = 5 Z 1 .  i~ 

[A N, H XuXZ(6) ] = iA V~vM(A ) 

Hence, (~u, DM H u (6), and the V N ( A ) 7 ' ) = 0  if ~u is any eigenstate of xxz 
result follows from the variational principle and the fact that e~ is 
independent of b.c. [] 

For 6 = -1 ,  

e~( - 1, 0) =- �89 2 In 2 ~ -0.8862944 

(isotropic antiferromagnet(9)). Let, now, ~=rc/6, 6/(1+A2)1/2=-,,f3/2; 
putting 6 = - 1, (1 + A2)1/2 = 2/xf3 or A = l /x /3  ~ 0.5780347. By Table I of 
ref. 8, 

coo ( - 1 , ~ 3 3 )  ( 1 =  1 2 ~ 3 ) ~ 3 =  2 11 rt ~ x / 3  18 

-~ -0.9790984 

We see therefore that in this special case the strict inequality 

e~(6, A ) <  e~(6, 0) 

obtains. The above inequality may be expected in general by analogy with 
the classical result [-see (1.2)]. 

2.3. Toroidal Boundary Condition ( p = l )  

We consider now the case where p = 1 and 0 < f2 < 2~ in (2.4)-(2.6). 
The results (2.8) indicate now that H~M(A, 6) is equivalent to the XXZ 
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chain with anisotropy 6/(1+A2) 1/2 and boundary condition +1 0"~+ 1 = 

e-T/(N~-e)a~l and a~ . With such toroidal boundary condition this last 
model is still soluble, by using the Bethe ansatz. (7'8) Using these results, the 
eigenenergies of the sector n 0, + 1, + 2,... of Dr, �9 = _ _ H N (A, 6) a r eg ivenby  

1 A2)~/2 E ~ - - - ~ ( I +  N c o s T + 4 s i n 2 7  ~ [cosh(272j)- COS T] 
j = l  

(2.11) 

where 6 cos ~b = 6/(1 + A2) 1/2 = cos 7 and {2:, j = 1, 2 ..... N/2 - n} are the 
roots of the Bethe ansatz equations 

is inhy(2j_i/2)]N N/2 " [sinh 7 , 2 j -  2k~ i)] 
s -~ -nh~+ i /2 ) J  ei(Nq)~)=-- k=lI~ ]_sinhy()v_2k+ ~ 

j =  l, 2, . . . ,N/2-n 
(2.12) 

The effect of the boundary condition is the appearance of the phase 
e i(N~-m in the left-hand side of (2.12). The zeros {2i} of these equations, 
corresponding to the eigenstate with lowest energy in the sector 
n = 0, _+ 1, ___ 2 ..... are real numbers and we can easily convert the complex 
equations (2.12) into real ones. In this case these eigenenergies for large, 
but finite lattice size N can be estimated by using standard methods. (13) 
These energies E~ in the region - 1 ~< cos 7 ~< 1 are given by 

E~ - eoo - -6 N ---7 (1 - 12 Xn, SeN) -~- o(N -2) (2.13a) 

where 

= n s i n  7 ( 1  + 32)1/2; X n ~,,. = n2X+ - -  7u~-  (2.13b) 
7 ' '  4X 

X =  (Tr - 7)/2n (2.13c) 

0~< ~N--= ( ~ )  mod 1 < 1 (2.13d) 

and e~ is given by (2.11). The above results show us that all these 
states degenerate as N---, o% indicating that the theory is gapless for 
- 1 ~ cos 7 ~< 1, or in the critical region of Fig. 1. 

Relation (2.13) has two consequences. First, for ?r +A2) 1/2 
r 1 ] it lies in the sector n = 0. This agrees with classical intuition, at least 

in the isotropic antiferromagnetic case (6 = 1): the corresponding minimal 
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energy classical configuration has a helical structure corresponding to (1.2) 
in the x - y  plane, with z components of neighboring spins antiparallel. 
Second, if O/2n = p/q, p, q ~ 2_, q # O, it is possible to choose sequences of 
lattice sizes S~n= { N ~ n = q i + r ; i = O ,  1, 2,...}, with r=0 ,  1,.. . ,q- 1, such 
that tpu}i~, given by (2.13d), is independent of i and equals OuJi~= 
(rO--g2)/2n. By (2.13a) and (2.13b), if the boundary angle is then chosen 
as f2=r~b, the energies E ;  (and in particular the ground-state energy, 
corresponding to n = 0) are minimized. No such choice is possible if O/2n 
is irrational. Again, this result is intuitive if one thinks of the classical 
helicoidal ground state of (1.2). 

2.4. Impl icat ions of Conformal  Invariance and 
Higher Spin Models  

The assumption of conformal invariance of critical models in (1 + 1) 
dimensions produces remarkable relations (15/ between the finite-size correc- 
tions of the eigenspectrum of finite-size Hamiltonians and the scaling 
dimensions of operators governing the critical behavior. Relations (2.13) 
are in complete agreement with these predictions whenever (~/2n is rational 
and we use the sequences (2.14b) in the N ~  oo limit. These predictions 
also state that the finite-size corrections of the vacuum energy of the finite 
quantum Hamiltonians, which are normally achieved when periodic bound- 
aries are imposed, are proportional to the central charge c, or conformal 
anomaly of the conformal theory. (14) As remarked in the previous section, 
(2.13) shows us that the true vauum, for O/2n=p/q and the lattice-size 
sequences Sr [-see (2.14b)], is obtained by choosing in (2.5) the boundary 
angle O = ~br (mod 2n), which is not periodic in general. Choosing this 
boundary condition for the Hamiltonian HDM(A, 6), its eigenspectrum for 
the sequence Sr is totally equivalent to the X X Z  chain with periodic bound- 
aries and anisotropy ?=cos- l[ - -O/( l+A2)1/2] .  From the equivalence 
(2.8) and the known spectroscopic calculations of the J(XZ chain with 
general boundary conditions, (7'8'16) we conclude that DM Hoo (A, 6) in its 
critical phase, whenever q~/2n is rational, is governed by a theory with 
conformal central charge c = 1 and operators satisfying a U(1) Kac-Moody 
algebra. The whole operator content can be promptly derived. 

It is an interesting result (16) that the whole operator content of the 
minimal models (t73 with conformal anomaly c = 1 -6 /m(m + 1 ), m = 3, 4 ..... 
may be derived from the X X Z  chain with several boundary conditions. The 
relations (2.8) imply that the same results can be obtained from the 
HDM(A, ~) with several values of the couplings and boundary conditions. 
In particular, ~7'8't6~ these results imply that the ground-state energy 
of the periodic ((2=0) Ni-sites Hamiltonian HDMtA 1), where N i =  

N i \ 
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2(m + l) i +  2, i =  0, 1, 2,..., and A = tan0r/m + 1) corresponds exactly to 
the ground-state energy of an N,.-site Hamiltonian describing the above 
minimal model when m = 3, 4 ..... In the case m = 3 and 4, where the corre- 
sponding minimal models are the Ising and three-state Potts models, these 
correspondences between the finite chains are exact. 

The results derived in Sections 2.1-2.3 may also be extended to 
generalizations of Heisenberg models with arbitrary spin S (1, 3/2, 2,...). Let 
us consider the arbitrary spin-S quantum Hamiltonian 

H s = ~  Q(Si. Si+ 1) (2.15) 
i 

where Q(x) is an arbitrary polynomial of degree 2S and S i -  (S[,  S~, S;)  
are the SU(2) spin-S matrices. We now introduce the Dzyaloshinsky- 
Moriya interactions in the following way: 

DM ~ ~ Y Y +A(&xS~+ ) . z + S  z z ] Hs  (d ) -=EQ[( l+A2) l /2 ( s ig i+ l+s ig i+ l  1 iSi+a 
i 

(2.16) 

We may show in a similar way as in Sections 2.1-2.3 that (2.16) and (2.15) 
are exactly related. The Hamiltonian (2.1) with boundary condition 
specified by p and 12 [see (2.5)] is exactly equal to the Hamiltonin (2.15) 
with boundary condition specified by p'/p and f2 '=  ~2-  N~b. If we choose 
in (2.15) the particular polynomial Q(x) introduced by Babujian and 
Takhtajan, (18) which is soluble through the Bethe ansatz, then (2.16) will 
be also an exactly integrable Hamiltonian. The Bethe ansatz equations, in 
this case, for (2.16) with boundary condition p =  1 and 0~<f2~<2z [see 
(2.5)_] are (19) 

( i) ( ) t , - i S )  NS-n ;ti_2j 
\ )~i + iS ,  ] ei(N(~- Q) = -- k =  2 , - q + i  

where n = zN+I S~. This is the generalization of (2.12) in the isotropic case 
(7--*0). It is also easy to derive an exactly integrable model which 
corresponds to the anisotropic generalization of (2.12). (2o) 

The same physical analysis of Sections 2.1-2.3 is also true for these 
general models, which are also critical. (is 20) 

2.5. Conclusions and Open Problems 

Although we have shown that some properties of the quantum model 
agree qualitatively with the intuition derived from classical models, several 
problems remain. In particular, quantum correlation functions such as 
(1.6) remain to be studied and might still show qualitative differences with 
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respect to their classical counterparts. Also, the thermodynamics remains to 
be studied, in particular whether the low-temperature behavior of the 
specific heat is different according to whether ~b/2rc is rational or irrational, 
in analogy to some results for classical models. (21) 

A second open problem is to find (at least partially) soluble models in 
higher dimensions. A standard approach to this problem is to formulate a 
mean-field version of the model, and then study a (Bethe-Peierls-Kikuchi) 
"expansion" around the mean-field solution. It does not seem easy, 
however, to find an interesting mean-field version, possibly because of the 
essentially local nature of DM interactions. 

NOTE A D D E D  IN PROOF 

The interesting question referred to in the text as the second 
consequence of (2.13) (see the end of section 2.3) has been studied in great 
detail and in a much wider context by Woynarovich, Eckle and Truong, 
J. Phys. A: Math. Gen. 22:4027 (1989). 
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